

Metabolic monitoring of German Simmental cows during early lactation based on milk infrared spectroscopy

Stefan Plattner^{1,2}, Hanka Lange^{1,2}, Martin Kammer³, Christian Baumgartner², Rolf Mansfeld¹

¹Clinic for Ruminants with Ambulatory and Herd Health Services, LMU Munich, Oberschleissheim, Germany ²*Milchprüfring Bayern e.V., Wolnzach, Germany*

³Landeskuratorium der Erzeugerringe für tierische Veredelung in Bayern e.V., Munich, Germany

flected by 45° and hits a fixed mirror is reflected, the other part transmits

- Ketosis = metabolic condition characterized by an elevated level of ketone bodies in blood with or without clinical signs of disease
- Infrared spectroscopy = physical analysis method based on irradiation of substances with infrared rays (Fig. 1)

2. Objectives

Development of a cost-effective and systematic monitoring tool for ketosis based on infrared spectra of milk samples

3. Materials and methods

Twenty-six German Simmental dairy herds with automatic milking system were visited once a week over a period of

Fig. 1: principles of infrared spectroscopy

- seven weeks
- Clinical examination, milk and blood sampling of cows between day 5 and day 50 in milk were performed
- Ketosis = blood beta-hydroxybutyrate (BHBA) concentration $\geq 1.2 \text{ mmol/l}$
- A linear discriminant analysis (LDA) model was developed to predict the probability of ketosis (KET-PRBLTY) based on differences in milk IR-spectra between healthy and ketotic COWS
- The model was optimized by the exclusion of all borderline samples (BHBA 1.2 mmol/l – 1.7 mmol/l) and by application of 10-fold cross-validation
- The final model was used to develop a "traffic light system" for ketosis based on its predictions (Fig. 4)

Fig. 4: "traffic light system" for ketosis

4. Results

A total of 1078 examinations were performed on 358 animals

Optimized "traffic light system" for ketosis	
Percentage of correct reports	
(BHBA < 1.2 mmol/l) on all	95%
"green" renorts	

- 10% of samples had blood BHBA levels \geq 1.2 mmol/l -
- Differences between the infrared spectra of healthy and ketotic cows were detected (Fig. 2)
- The developed model is identifying cows without ketosis with better accuracy than cows with ketosis (Fig. 3) The optimized "traffic light system" shows good performance (Fig. 5)

green reports	
Percentage of animals without	
ketosis (BHBA < 1.2 mmol/l) on	71%
all "yellow" reports	
Percentage of animals with	
ketosis (BHBA ≥ 1.2 mmol/l) on	29%
all "yellow" reports	
Percentage of correct reports	
(BHBA ≥ 1,2 mmol/l) on all "red"	<mark>68%</mark>
reports	

IN TOTAL: 91% GREEN REPORTS 7% YELLOW REPORTS 2% RED REPORTS

Fig. 5: key figures of the optimized "traffic light system" for ketosis

Corresponding author: splattner@mpr-bayern.de

Supported by: